

Micronucleus Analysis Kit

MicroFlow (In Vitro, 96 well)

Instruction Manual

READ ME FIRST

CRITICAL for the success of this assay:

Cell Culture Conditions

While optimal cell culture conditions are cell line specific, a useful rule of thumb is that suspension cell lines should be maintained below 1 x 10⁶ cells/mL, and attachment cell lines should be maintained at less than 80 % confluency.

It is critical to perform a growth curve with the cell line you intend to use before performing micronucleus (MN) assays. This is because the doubling time dictates the appropriate post-exposure cell harvest time. Also, if cells are not doubling in the expected time-frame, this is a strong signal that there are issue(s) with the culture conditions that must be resolved before MN experiments are performed.

Overtly Cytotoxic Conditions

Chemical treatment conditions that cause overly cytotoxic effects can result in "false positive" MN results (some literature refers to these as "irrelevant positive" results). Consult the most current Organisation for Economic Co-operation and Development (OECD) Test Guideline (No. 487) for specific advice about choosing an appropriate cytotoxicity measurement and cytotoxicity limits that should not be exceeded when conducting MN assays. Additional information regarding cytotoxicity measurements appears in Sections 3 and 10 of this instruction manual.

Flow Cytometer Considerations

Most flow cytometers that are capable of providing 488 nM excitation are compatible with this assay.

When using Becton Dickinson's High Throughput System (HTS), BD Sheath Solution should be substituted with blood bank saline or filtered distilled water. This is because certain specialized sheath compositions compromise FITC channel fluorescence stability.

Avoid excessive flow cytometric event acquisition rates as they compromise FITC channel fluorescence signals.

Table of Contents

1.	Materials Provided			
2.	Additional Materials Required	3		
3.	Recommended Reading for First-Time Users			
	3.1. Study Design	4		
	3.2. Flow Cytometer Considerations	4		
	3.3. Cell Lines	4		
	3.4. Template Preparation	4		
	3.5. Cytotoxicity Measurements	5		
4.	Introduction	6		
	4.1. The In Vitro MicroFlow Method	6		
	4.2. High Content Analysis	6		
5.	Reagent Preparation	7		
	5.1. 1X Buffer Solution	7		
	5.2. Complete Nucleic Acid Dye A Solution	7		
	5.3. Complete Lysis Solution 1	7		
	5.4. Complete Lysis Solution 2	7		
6.	Suspension Cell Protocol	8		
	6.1. Cell Harvest	8		
	6.2. Complete Nucleic Acid Dye A Staining	8		
	6.3. Simultaneous Cell Lysis and Nucleic Acid Dye B Staining	8		
7.	Attachment Cell Protocol Number 1	9		
	7.1. Cell Harvest	9		
	7.2. Complete Nucleic Acid Dye A Staining	9		
	7.3. Simultaneous Cell Lysis and Nucleic Acid Dye B Staining	9		
8.	Attachment Cell Protocol Number 2	10		
	8.1. Cell Harvest	10		
	8.2. Complete Nucleic Acid Dye A Staining	11		
	8.3. Simultaneous Cell Lysis and Nucleic Acid Dye B Staining	11		
9.	Flow Cytometric Setup and Data Acquisition	11		
10.	Calculations	14		
11.	Troubleshooting	18		
12.	References	19		
13.	License Agreement and Limited Product Warranty	19		
App	pendix A: Template Preparation and Representative Plots	20		
App	pendix B: Criteria for Scoring Micronuclei	23		
App	pendix C: Plate Placement During Nucleic Acid Dye A Photoactivation	23		
App	pendix D: Multichannel Aspirator with Bridge	24		
App	pendix E: Counting Beads as Quality Control Particles	25		
App	pendix F: Strategies for Dealing with Volatile Chemicals	26		

1. Materials Provided

250/50 Sample Kit Components	Quantitya	Storage Condition ^b
Incomplete Lysis Solution 1	30 mL	2 °C to 8 °C
Incomplete Lysis Solution 2	30 mL	2 °C to 8 °C
Nucleic Acid Dye A (Ethidium monoazide, EMA)	0.170 mL	-10 °C to -30 °C, light sensitive
Nucleic Acid Dye B (SYTOX® Green nucleic acid stainc)	0.230 mL	-10 °C to -30 °C, light sensitive
RNase Solution	0.145 mL	–10 °C to –30 °C
10X Buffer	30 mL	Ambient

1000/200 Sample Kit Components	Quantitya	Storage Condition ^b
Incomplete Lysis Solution 1	120 mL	2 °C to 8 °C
Incomplete Lysis Solution 2	120 mL	2 °C to 8 °C
Nucleic Acid Dye A (Ethidium monoazide, EMA)	0.685 mL	-10 °C to -30 °C, light sensitive
Nucleic Acid Dye B (SYTOX® Green nucleic acid stainc)	0.925 mL	-10 °C to -30 °C, light sensitive
RNase Solution	0.580 mL	–10 °C to –30 °C
10X Buffer	120 mL	Ambient

2000/400 Sample Kit Components	Quantitya	Storage Condition ^b
Incomplete Lysis Solution 1	240 mL	2 °C to 8 °C
Incomplete Lysis Solution 2	240 mL	2 °C to 8 °C
Nucleic Acid Dye A (Ethidium monoazide, EMA)	1.37 mL	-10 °C to -30 °C, light sensitive
Nucleic Acid Dye B (SYTOX® Green nucleic acid stainc)	1.85 mL	-10 °C to -30 °C, light sensitive
RNase Solution	1.16 mL	−10 °C to −30 °C
10X Buffer	240 mL	Ambient

- a. Sufficient materials are provided to analyze 250, 1,000, or 2,000 96-well cultures, or 50, 200, or 400 larger format cultures.
- b. Please note that although some kit components are shipped at ambient temperature, they must be stored at the temperatures indicated above upon receipt.
- c. SYTOX® Green, trademark Life Technologies.

2. Additional Materials Required

- 6 micron fluorescent microspheres (Life Technologies, cat. no. C-16508, or comparable)
- Cell line TK6, L5178Y, V79, or CHO-K1 (see Section 3.3; additional cell lines are compatible, but there are fewer published studies)
- Commercially-heat-inactivated, sterile fetal bovine serum (FBS)
- Deionized water (dH₂O)
- -20 °C freezer
- 4 °C refrigerator
- Centrifuge with swinging bucket rotor to accommodate 96 well plate carriers
- CO₂-regulated, 37 °C incubator
- Flow cytometer capable of 488 nm excitation. A High Throughput Sampler (HTS) or similar device is recommended for 96 well plate-based work. See Section 3.2.
- Optional: flow cytometry tubes

- Disposable pipettes sized 5, 10, 25, and 50 mL
- Vortex mixer and sonicator
- Light source to photoactivate Nucleic Acid Dye A (fluorescent- or LED-type are preferred)
- Polypropylene centrifuge tubes (e.g., 15 mL)
- Micropipettors (2 μL 1000 μL) and tips
- 96-well plates (U-bottom plates recommended for both treatment and analysis of suspension cells and analysis of attachment cells; flat bottom plates recommended for treatment of attachment cells) and additional materials for maintaining cell lines
- 8 channel aspirator manifold and bridge (V&P Scientific, cat. no. VP 180PC-3S). See Appendix D.
- Accutase® is required for certain attachment cell lines (see Section 8)
- Optional: commercially available adhesive films and other strategies can be used to reduce effects that volatile test chemicals have on adjacent wells of a 96-well plate (see Appendix F)

3. Recommended Reading for First-Time Users

Please read the entire instruction manual before performing these procedures. Deviating from the procedures described in this manual may adversely affect the results of your assay. Inattention to culture conditions and overall cell health, substitution of kit components and changes to incubation times, reagent volumes, etc., is not advisable. If you have questions, please contact Litron by calling (585) 442-0930, faxing us at (585) 442-0934, or sending an email to info@litronlabs.com.

3.1. Study Design

Historically, when the MN assay is performed in cell lines that are not metabolically competent, the experiment is performed under more than one condition (e.g., in the presence and absence of an exogenous metabolic activation system). It is beyond the scope of this instruction manual to provide guidance about this and other experimental design elements such as number of treatment groups, etc. When considering experimental details such as these, whether in the context of regulatory or non-regulatory studies, it is useful to consult the most recent OECD Test Guideline (No. 487) for general advice.

3.2. Flow Cytometer Considerations

The assay requires a flow cytometer capable of providing 488 nm excitation. Standard factory-installed filter sets are typically sufficient to achieve fluorescent resolution of the relevant cell populations. In most cases, the red (Nucleic Acid Dye A) fluorescence should be collected in the PerCP channel, and the green (Nucleic Acid Dye B) fluorescence should be collected in the FITC channel.

The assay is most efficiently performed when the flow cytometer is equipped to automatically analyze wells of 96 well plates (e.g., with Becton Dickinson [BD] High Throughput System [HTS]). Alternately, treated and stained specimens can be transferred from 96 well plates into standard flow cytometry tubes at time of analysis.

When using BD's HTS-equipped instruments, BD Sheath Solution should be substituted with blood bank saline or filtered distilled water. This is because the use of certain sheath compositions can compromise FITC channel fluorescence stability. Additionally, FITC channel fluorescence stability is negatively affected by excessive event acquisition rates. Using the fluidics settings and acquisition rates described in this manual will help maintain stable FITC channel fluorescence.

3.3. Cell Lines

This method was developed using human lymphoblastoid cells (TK6), mouse lymphoma cells (L5178Y TK+/-) and an attachment cell line (CHO-K1). Additional cell lines that have been successfully studied with this method include: V79, HepG2, A549, A375, and AHH-1 cells. Other mammalian cell lines are expected to be compatible with this kit as long as cell division is occurring in a predictable manner.

While optimal cell culture conditions are cell line specific, a useful rule of thumb is that suspension cell lines should be maintained below 1 x 10⁶ cells/mL, and attachment cell lines should be maintained at less than 80 % confluency.

It is critical to perform a growth curve with the cell line you intend to use before performing this assay. If cell cultures are not doubling in the expected ranges for the cell line, MN may not be expressed using standard treatment schedules. If cells have non-standard doubling times, it may be due to cells that have not fully recovered from thawing, or suboptimal cell culture conditions that are causing sluggish growth and/or cell death.

3.4. Template Preparation

Template files are available on Litron's website (www.LitronLabs.com), but are specific to CellQuest™ 3.3, CellQuest™ Pro 5.2, FACSDiva™ 6.1, and MACSQuantify™ software. If you are unable to use these templates, please prepare one PRIOR to analysis. See Appendix A for screen images which can be used in preparation of a data acquisition and analysis template.

3.5. Cytotoxicity Measurements

Proper cytotoxicity measurements are critical for effectively evaluating chemicals for genotoxic potential, and for striking a balance between assay sensitivity and specificity. Even so, it is <u>not</u> the goal of this MicroFlow Kit instruction manual to make exact and highly prescriptive recommendations for measuring cytotoxicity, or for setting an MN assay cytotoxicity limit. That contradicts our view that there are a number of viable and potentially appropriate strategies for accomplishing these goals. Thus, each laboratory should develop a strategy that makes sense given their cell line of choice, laboratory equipment, and other considerations. Ultimately, a laboratory's cytotoxicity strategy should be well articulated and supported by experimental data generated at their own facility. To help with the development of a strategy, some general information is provided below.

The most recent MN OECD Test Guideline (no. 487) has a stated preference for cytotoxicity measurements that ensure a sufficient number of cells underwent division over the course of treatment. This explains the Test Guideline's preference for Relative Increased Cell Counts (RICC) or Relative Population Doubling (RPD) for cytotoxicity assessments when cytochalasin B is not used to arrest cells in a binucleated state.

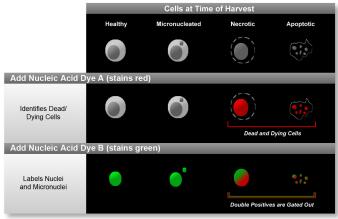
Note that RICC and RPD both require cell (or nuclei) density measurements at <u>two</u> time points, one when treatment with test article is initiated, and one when cells (or nuclei) are harvested for MN analysis. As indicated in the OECD Test Guideline, the density of cells or the density of nuclei can be used for RICC and RPD calculations.

While some flow cytometers are capable of directly ascertaining cell (or nuclei) densities, others are not. In the latter case, there are two general approaches for performing these measurements:

- One approach is to use extra cells at time of treatment and again at time of harvest to make density measurements using a hemocytometer or other counting device. Depending on the device, there may or may not be enough cells in the wells of a post-treatment 96 well plate to perform both the cytotoxicity measurement and to process remaining cells for MN analysis. If the device requires too much volume or numbers of cells, then the use of a similarly-treated sister plate may provide the extra cells necessary for density measurements.
- A second approach makes use of fluorescent microspheres at a known density. In this manual, these fluorescent microspheres are referred to as "Counting Beads." By understanding the density of the Counting Beads, it is possible to calculate the density of cells or nuclei that are present in a Counting Bead-containing sample. In this scenario, one would simply make a Counting Bead density measurement using some reliable approach, and this can be used to infer cell (or nuclei) densities in experimental samples that contain Counting Beads. The advantage of this approach is that it is possible to determine nuclei densities in the <u>same</u> flow cytometric analyses that are used to score MN frequencies.

Finally, it should be pointed out that early in the development of the *In Vitro* MicroFlow assay, relative nuclei counts (RNC) at one time point (when cells are harvested for MN scoring) were used as the primary cytotoxicity endpoint. On initial consideration, this might be thought of as akin to relative cell counts, a cytotoxicity measurement that is not preferred by the current OECD Test Guideline due to the lack of proof of cell proliferation. However, there are several differences when using RNC with MicroFlow that should be appreciated. First, flow cytometric gating strategies omit potentially confounding unhealthy cells' nuclei from the analysis. These gating strategies consider forward scatter characteristics, side scatter characteristics, and permeability to the dye ethidium monoazide (EMA). Under these circumstances, RNC represent a more sensitive endpoint of cytotoxicity as compared to many methods that simply count whole cells, such as those that rely on Coulter counting. Second, qualitative information on cell cycle is simultaneously acquired with MN counts. Thus, expected cell cycle distributions in solvent-treated cultures can be confirmed to historical observations within the test facility, thereby providing evidence of cell proliferation.

The use of EMA dye to stain the chromatin of dead and dying cells has been used throughout the development and commercialization of the *In Vitro* MicroFlow assay. It is therefore well documented that EMA-positive events provides a supplemental index of cytotoxicity, one that is especially sensitive to apoptosis. It follows then that MN increases that are accompanied by large increases in EMA-positive events should be interpreted with caution, as they may be the result of overt cytotoxicity as opposed to *bona fide* test article-induced genotoxicity.


Additional information regarding cytotoxicity measurements appears in Section 10.

4. Introduction

The *In Vitro* MicroFlow Kit provides a highly efficient flow cytometric method for scoring micronuclei in cultured mammalian cells. Using a 2-color labeling technique, this is a fast, effective tool for evaluating the genotoxic activity of chemicals. This manual describes procedures required to process and score micronuclei in 96-well plates.

4.1. The In Vitro MicroFlow Method

There has been a growing consensus that the *in vitro* MN assay offers significant benefits over traditional chromosome aberration (CA) assays. Whereas CA assays detect structural chromosome damage, the MN endpoint is responsive to both structural and numerical alterations. Furthermore, the MN assay has much higher throughput capacity than CA analysis – an advantage that is significantly enhanced now that MN scoring has been successfully automated using flow cytometry.

The advantage of the *In Vitro* MicroFlow method relative to other automated scoring procedures is the use of sequential staining that results in the differentiation of MN from the chromatin of apoptotic and necrotic cells. Therefore, reliable MN measurements are obtained even when appreciable numbers of dead cells are present.

A key component of the kit is Nucleic Acid Dye A (i.e., EMA), a reagent that crosses the compromised outer membrane of apoptotic and necrotic cells. A unique property of this dye is that it is covalently bound to DNA through photoactivation. Thereafter, cells are washed and the cytoplasmic membranes are digested with detergent to liberate nuclei and MN. During the lysis step, Nucleic Acid Dye B (i.e., SYTOX Green) is introduced which labels all chromatin. In this way, differential staining of healthy chromatin versus that of dead/dying cells is achieved. A diagram of this staining strategy is shown above.

4.2. High Content Analysis

The *In Vitro* MicroFlow kit provides the user with a high information content assay. That is, in addition to MN measurements, several valuable endpoints can be acquired simultaneously. These additional endpoints provide cytotoxicity information that is extremely valuable for interpreting the context in which MN induction may have occurred. These endpoints are:

- Cytotoxicity: Cytotoxicity measurements such as RICC, RPD, and RNC can be accomplished directly and concurrently with MN scoring so long as the flow cytometer is capable of volumetric counting. Most modern flow cytometers are capable of this. In those cases where a flow cytometer is not equipped to directly measure nuclei density, one can make use of fluorescent microspheres at a known density, i.e., Counting Beads. By determining the density of Counting Beads, for instance via a Coulter counter, hemocytometer, or other measuring device, it is possible to calculate the density of nuclei that are present in a Counting Bead-containing sample. This represents another approach that one can use to simultaneously determine RICC or RPD or RNC along with MN frequency.
- Cell Cycle Information: Test article-induced perturbations to the cell cycle are apparent by studying histograms
 of Nucleic Acid Dye B (SYTOX Green) fluorescence. For instance, expected G2/M blocks following treatment
 with alkylating agents are readily observed.
- Dead and Dying Cells: The health of treated cells can be inferred from the percentage of particles that are stained with Nucleic Acid Dye A (EMA-positive). Since the fragmented nuclei of apoptotic cells can each form many such particles, this metric is particularly sensitive to apoptosis.

5. Reagent Preparation

Working solutions should be prepared **fresh each day** that cell harvest and staining/lysis is performed. It is most practical to prepare the desired volumes of all of these solutions, as described below, <u>before</u> cell harvest begins.

5.1. 1X Buffer Solution

Number of samples Vol		Volume of dH ₂ O	Volume of 10X Buffer	Volume of FBS	
	96 (one plate)	18.9 mL	2.1 mL	0.42 mL	

- 1. Use the chart above to determine the volume of 1X Buffer Solution required. Scale up as necessary.
- 2. Add the required volumes of dH₂O, 10X Buffer and FBS to a clean vessel. Filter sterilize and store on ice or refrigerate until use.

5.2. Complete Nucleic Acid Dye A Solution

Number of samples		olume of 1X Buffer Solution	Volume of Nucleic Acid Dye A	
96 (one	e plate)	6.5 mL	65 <i>μ</i> L	

- 1. Use the chart above to determine the volume of Complete Nucleic Acid Dye A Solution required. Scale up as necessary.
- 2. Combine the required volumes of 1X Buffer Solution and Nucleic Acid Dye A in a clean polypropylene vessel. Protect from light and store on ice or refrigerate until use.

5.3. Complete Lysis Solution 1

Number of samples	Volume of Incomplete Lysis Solution 1	Volume of Nucleic Acid Dye	Volume of RNase Solution	Counting Beads (for cytotoxicity
		В		assessment)
96 (one plate)	11.0 mL	44 μL	55 μL	1 drop

- 1. Use the chart above to determine the amount of Complete Lysis Solution 1 required. Scale up as necessary.
- 2. Combine the required volumes of Incomplete Lysis Solution 1 with Nucleic Acid Dye B and RNase Solution in a clean polypropylene vessel.
- 3. If desired, briefly sonicate and vortex a stock bead suspension. Add the bead suspension to the prepared Complete Lysis Solution 1 at 5 μ L/mL (approximately 1 drop per 10 mL) and mix well.

Green fluorescent microspheres (6 micron) from Life Technologies, catalog number C-16508, are recommended.

4. Protect Complete Lysis Solution 1 from light and store at <u>ambient temperature</u> until use. At this point, perform an absolute bead count if interested in obtaining nuclei densities and density-dependent cytotoxicity measurements.

5.4. Complete Lysis Solution 2

Number of	Number of samples Volume of Incomplete Lysis Solution 2		Volume of Nuclei Acid Dye B	
96 (on	e plate)	11.0 mL	44 <i>μ</i> L	

- 1. Use the chart above to determine the amount of Complete Lysis Solution 2 required. Scale up as necessary.
- 2. Combine the required volumes of Incomplete Lysis Solution 2 with Nucleic Acid Dye B in a clean polypropylene vessel.
- 3. Protect Complete Lysis Solution 2 from light and store at ambient temperature until use.

6. Suspension Cell Protocol

Depending on your cytotoxicity strategy and the volume of cell culture required for these analyses, it may be important to: i) collect cell (or nuclei) density measurements shortly before treatment with test chemical(s) takes place, and/or ii) seed cells into an extra plate that will be treated with test chemical(s) in the very same way plates dedicated to MN analysis occurs. As described in Sections 3.5 and 10, these measurements can be useful for calculating certain cytotoxicity metrics.

6.1. Cell Harvest

- 1. Remove 96 well plate(s) containing treated cells from the incubator.
- 2. Place 96 well plate(s) under an inverted microscope. Through visual examination, it may be possible to eliminate from MN scoring overly cytotoxic concentrations. At this time, it is also useful to examine wells for visible precipitate. While OECD Test Guideline 474 recommends analyzing the lowest precipitating concentration, precipitate can cause clogs and thereby interfere with reliable flow cytometer operation. Therefore, exercise caution if you decide to analyze wells at the lowest precipitating concentration. Generally speaking, it is best to eliminate any additional, higher concentration wells that exhibit visible precipitate.
- 3. Collect cells via centrifugation at 300 x g for 5 minutes.
- 4. Slowly and carefully aspirate the supernatants, taking care not to disturb the pellet (see Appendix D).
- 5. Loosen cells by gentle tapping or place plates on a plate shaker on a low speed.
- 6. Place samples on wet ice for 20 minutes before continuing to Section 6.2.

6.2. Complete Nucleic Acid Dye A Staining

- Carefully add 50 μL of Complete Nucleic Acid Dye A Solution to each well. Gently pipette up and down to mix, making sure all cells come into contact with this solution.
- 2. Place plates on wet ice.
- 3. Leave the plate cover off and place a light source above the plates (see Appendix C). With plates on ice, expose the samples to visible light for 30 minutes.
- 4. Turn off the visible light source and add 150 μ L of cold 1X Buffer Solution to each sample. From this point forward, limit the exposure of samples to light.
- 5. Collect cells via centrifugation at 300 x g for 5 minutes.
- 6. Slowly and carefully aspirate the supernatants, taking care not to disturb the pellet (see Appendix D).
- 7. Loosen cells by gentle tapping or place plates on a plate shaker on a low speed. Proceed immediately to Section 6.3.

6.3. Simultaneous Cell Lysis and Nucleic Acid Dye B Staining

- 1. Vortex or resuspend Complete Lysis Solution 1 and add 100 μ L to the first row using a multi-channel pipette. Immediately pipette the samples up and down to make sure all cells come into contact with the reagents.
- 2. Change tips and repeat Step 1 for all remaining rows.
- 3. Incubate the samples for one hour in the dark at ambient temperature.
- 4. Forcefully add 100 μ L Complete Lysis Solution 2 to each well.
- 5. Incubate the samples for 30 minutes in the dark at ambient temperature.
- 6. Analyze after incubation, or store samples at 4 °C and protect from light for up to 24 hours before flow cytometric analysis. An adhesive film that prevents evaporation should be used if samples will be stored more than 4 hours.

7. Attachment Cell Protocol Number 1

Two protocols for collecting and preparing attachment-type cell lines for MN analysis are described. Protocol Number 1 (this section) simply relies on Complete Lysis Solutions 1 and 2 to completely liberate cells' nuclei for staining and analysis. So long as all cells are lifted and lysed effectively by these reagents, this is the simpler, recommended protocol. At Litron, we have found that this protocol is effective for preparing CHO-K1 and V79 cells for MN analysis.

It is important for attachment cell lines to fully attach and recover after initially seeding. Therefore, it is usually best to seed plates and then re-incubate them overnight to allow the cells to attach and reenter an exponential growth phase. When choosing a seeding density, be sure to factor in the additional growth time for the overnight attachment phase to ensure that your cells do not over grow by the end of the experiment.

Depending on your cytotoxicity strategy and the volume of cell culture required for these analyses, it may be important to: i) collect cell (or nuclei) density measurements shortly before treatment with test chemical(s) takes place, and/or ii) seed cells into an extra plate that will be treated with test chemical(s) in the very same way plates dedicated to MN analysis occurs. As described in Sections 3.5 and 10, these measurements can be useful for calculating certain cytotoxicity metrics. For additional useful advice about the use of attachment cells, see the paper by Bemis et al., 2016.

7.1. Cell Harvest

- 1. Remove 96 well plate(s) containing treated cells from the incubator.
- 2. Place 96 well plate(s) under an inverted microscope. Through visual examination, it may be possible to eliminate from MN scoring overly cytotoxic concentrations. At this time, it is also useful to examine wells for visible precipitate. While OECD Test Guideline 474 recommends analyzing the lowest precipitating concentration, precipitate can cause clogs and thereby interfere with reliable flow cytometer operation. Therefore, exercise caution if you decide to analyze wells at the lowest precipitating concentration. Generally speaking, it is best to eliminate any additional, higher concentration wells that exhibit visible precipitate.
- Place plates on wet ice for 10 minutes.
- 4. Remove the treatment media from the wells. Some groups use a multichannel aspirating device, others empty plate contents by flicking onto an absorbent pad. In the latter case, it is important to use an impenetrable plastic-backed pad, and to immediately dispose of it properly. Immediately proceed to Section 7.2.

7.2 Complete Nucleic Acid Dye A Staining

- 1. Carefully add 50 µL of Complete Nucleic Acid Dye A Solution to each well. Make sure that the entire cell surface is covered with this solution.
- 2. Place plates on wet ice.
- 3. Leave the plate cover off and place a light source above the plates (see Appendix C). With plates on ice, expose the samples to visible light for 30 minutes.
- 4. Turn off the visible light source and add 150 μ L of cold 1X Buffer Solution to each sample. From this point forward, limit the exposure of samples to light.
- 5. Slowly and carefully aspirate supernatants (see Appendix D). Proceed immediately to Section 7.3.

7.3 Simultaneous Cell Lysis and Nucleic Acid Dye B Staining

- 1. Vortex or resuspend Complete Lysis Solution 1 and add $100 \mu L$ to each well.
- 2. Incubate the samples for one hour in the dark at 37 $^{\circ}$ C.
- 3. Add 100 μ L Complete Lysis Solution 2 to each well. Gently pipette cells up and down 10 to 12 times using a multichannel pipette.
- 4. Incubate the samples for 30 minutes in the dark at ambient temperature.
- 5. After the incubation, resuspend the cells by gentle pipetting the contents up and down and transfer to a new

round bottom 96-well plate.

Analyze after transfer, or store samples at 4 °C and protect from light for up to 24 hours before flow cytometric
analysis. An adhesive film that prevents evaporation should be used if samples will be stored more than 4 hours.

8. Attachment Cell Protocol Number 2

Two protocols for collecting and preparing attachment-type cell lines for MN analysis are described. Protocol Number 2 (i.e., Section 8) relies on Accutase® to lift cells from the culture plate prior to liberating cells' nuclei with Complete Lysis Solutions 1 and 2. At Litron, we have found that this protocol is more effective than Protocol Number 1 for preparing HepG2 cells for MN analysis.

It is important for attachment cell lines to fully attach and recover after initially seeding. Therefore, it is usually best to seed plates and then re-incubate them overnight to allow the cells to attach and reenter an exponential growth phase. When choosing a seeding density, be sure to factor in the additional growth time for the overnight attachment phase to ensure that your cells do not over grow by the end of the experiment.

Depending on your cytotoxicity strategy and the volume of cell culture required for these analyses, it may be important to: i) collect cell (or nuclei) density measurements shortly before treatment with test chemical(s) takes place, and/or ii) seed cells into an extra plate that will be treated with test chemical(s) in the very same way plates dedicated to MN analysis occurs. As described in Sections 3.5 and 10, these measurements can be useful for calculating certain cytotoxicity metrics. For additional useful advice about the use of attachment cells, see the paper by Bemis et al., 2016.

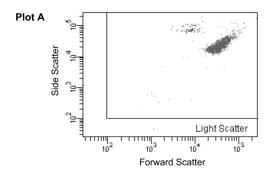
8.1 Cell Harvest

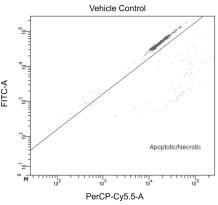
- 1. Remove 96 well plate(s) containing treated cells from the incubator.
- 2. Place 96 well plate(s) under an inverted microscope. Through visual examination, it may be possible to eliminate from MN scoring overly cytotoxic concentrations. At this time, it is also useful to examine wells for visible precipitate. While OECD Test Guideline 474 recommends analyzing the lowest precipitating concentration, precipitate can cause clogs and thereby interfere with reliable flow cytometer operation. Therefore, exercise caution if you decide to analyze wells at the lowest precipitating concentration. Generally speaking, it is best to eliminate any additional, higher concentration wells that exhibit visible precipitate.
- Remove the treatment media from the wells. Some groups use a multichannel aspirating device, others empty
 plate contents by flicking onto an absorbent pad. In the latter case, it is important to use an impenetrable plasticbacked pad, and to immediately dispose of it properly.
- 4. Rinse the cells with 150 µL of 1x PBS. Remove the PBS from the wells, as in step 3, above.
- 5. Add 50 μ L of Accutase[®] and incubate cells for 10 minutes in the dark at 37 °C.
- 6. After incubation, add 150 μ L of media, pipette cells up and down 6 to 8 times and transfer to a new round bottom 96-well plate.
- 7. Collect cells via centrifugation at 300 x g for 5 minutes.
- 8. Slowly and carefully aspirate the media from the wells, taking care not to disturb the pellet.
- 9. Add another 200 μ L of media, mix cells by pipetting a few times.
- 10. Collect cells via centrifugation at 300 x g for 5 minutes.
- 11. Slowly and carefully aspirate the media from the wells, taking care not to disturb the pellet.
- 12. Loosen cells by gentle tapping or place plates on a plate shaker on a low speed.
- 13. Place plates on wet ice for 10 minutes. Proceed to Section 8.2.

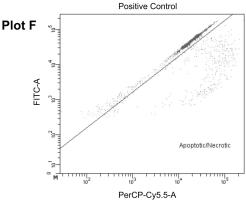
8.2 Complete Nucleic Acid Dye A Staining

- 1. Carefully add 50 µL of Complete Nucleic Acid Dye A Solution to each well. Gently pipette up and down to mix, making sure all cells come into contact with the solution.
- 2. Place plates on wet ice.
- 3. Leave the plate cover off and place a light source above the plates (see Appendix C). With plates on ice, expose the samples to visible light for 30 minutes.
- 4. Turn off the visible light source and add 150 μ L of cold 1X Buffer Solution to each sample. From this point forward, limit the exposure of samples to light.
- 5. Collect cells via centrifugation at 300 x q for 5 minutes.
- 6. Slowly and carefully aspirate supernatants (see Appendix D).
- 7. Loosen cells by gentle tapping or place plates on a plate shaker on a low speed. Proceed immediately to Section 8.3

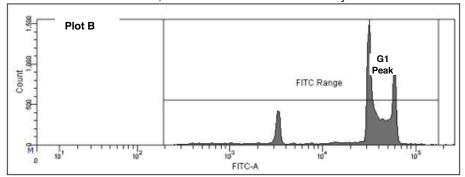
8.3 Simultaneous Cell Lysis and Nucleic Acid Dye B Staining


- 1. Vortex or resuspend Complete Lysis Solution 1 and add 100 μ L to the first row using a multi-channel pipette. Immediately pipette the samples up and down to make sure all cells come into contact with the reagents.
- 2. Change tips and repeat Step 1 for all remaining rows.
- 3. Incubate the samples for one hour in the dark at 37 °C.
- 4. Add 100 μ L Complete Lysis Solution 2 to each well. Gently pipette cells 10 to 12 times using a multichannel pipette.
- 5. Incubate the samples for 30 minutes in the dark at ambient temperature.
- Analyze after incubation, or store samples at 4 °C and protect from light for up to 24 hours before flow cytometric
 analysis. An adhesive film that prevents evaporation should be used if samples will be stored more than 4 hours.

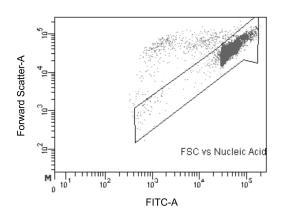

9. Flow Cytometric Setup and Data Acquisition


Important Notes:

- The following setup and compensation instructions are specific for FACSDiva™ software, but should be useful with other software packages. For BD-brand HTS systems, BD-brand sheath solutions should be replaced with blood bank saline solution or filtered distilled water in order to prevent FITC-channel shift.
- Prior to analyzing experimental samples, it is recommended that you analyze a solvent control sample and a positive
 control sample first to verify that the template and instrument settings are appropriate.
- Protect samples from light. Ensure samples have equilibrated to ambient temperature before data acquisition occurs.
- 1. Before analyzing samples, ensure that the flow cytometer is working properly. Follow the manufacturer's instructions for the appropriate setup and quality control procedures.
- 2. Open the template file or create one following the guidance in Appendix A.
 - If using FACSDiva™ software, perform the following steps:
 - a. Locate the desired FACSDiva™ template (.xml file).
 - Open the following folders on your computer: My computer > New Volume(D) > BDExport > Templates >
 Experiment > General.
 - c. Drag the template into the General folder.
 - d. Close this window and start the FACSDiva™ software.

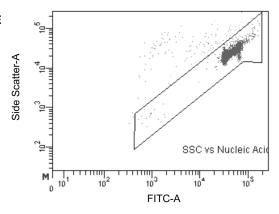

- e. Click on "Experiment" in the menu bar and create a new folder. Select the new folder and click the "New Experiment" button on the Browser toolbar. The Experiment Template dialog appears. Click the "General Tab" and select your template.
- 3. Users of BD-brand HTS equipment should set their loader settings as follows:
 - a. Throughput = Standard
 - b. Sample Flow Rate = $0.5 \mu L/sec$
 - c. Sample Volume = $75 \mu L$
 - d. Mixing Volume = 100μ L
 - e. Mixing Speed = $100 \mu L/sec$
 - f. Number of Mixes = 5
 - g. Wash Volume = $400 \mu L$
- 4. The system should be primed at least three times before proceeding with analysis.
- 5. Place the plate on the flow cytometer. Using a solvent control well for setup, acquire sample in "set-up mode". Adjust FSC and SSC voltages to bring nuclei into view as shown in Plot A, right. The bottom left edge of the nuclei events should be approximately 2 logs higher in FSC and SSC than the lower bounds of the region.
- 6. Adjust PerCP PMT voltage (EMA fluorescence) until the majority of the nuclei are above the Apoptotic/Necrotic region, as shown below. There should be nearly a log of fluorescent resolution between nuclei from healthy and dead cells. Representative plots showing EMA staining characteristics of a vehicle control and a positive control are shown below.

7. Locate the nuclei G1 peak in PLOT B and adjust the FITC (FL1) PMT voltage until the peak is positioned at a high enough FITC (FL1) channel so that 1/100th of this fluorescence signal will still fall on scale. It is important to set nuclei high in SYTOX-associated fluorescence, since MN with 1/100th the intensity of G1 events need to fall on scale.

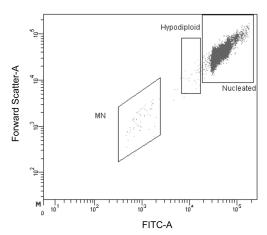


8. Set the threshold parameter (also referred to as the acquisition trigger) to FITC (FL1) fluorescence (i.e., SYTOX Green). Adjust the threshold so that some events are collected that fall just to the left edge of the FITC (FL1) range that is defined in Plot B, above. For those instruments that are capable of thresholding on two parameters, a second parameter (either SSC or FSC) is recommended. Note that when a light scatter secondary threshold is used, it is

important not to set the value too high, otherwise micronuclei will be excluded. Use the lower bounds of the "Light Scatter" region shown in Plot A (step 4) as a guide.


- 9. After positioning the G1 peak on Plot B, make sure that PerCP (EMA fluorescence) PMT voltage is still appropriate (Plot F). See step 5.
- 10. Adjust the position of the "FSC vs. Nucleic Acid Dye B" region until nuclei are positioned as shown in Plot D.

Plot D


11. Adjust the position of the "SSC vs. Nuclei Acid Dye B" region until nuclei are positioned as shown in Plot E.

Plot E

12. Ensure that nuclei fall within the "Nucleated" region, as shown in Plot G.

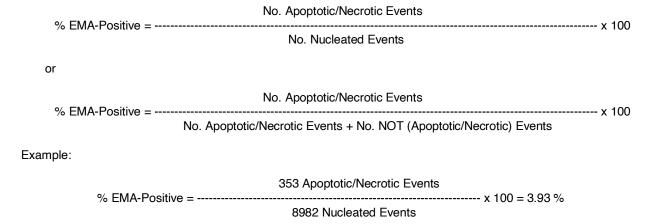
Plot G

- 13. It is preferable that the regions and instrument settings are not changed between experimental samples. Therefore, carefully consider PMT voltage and threshold settings during setup.
- 14. Set a stop mode based on the number of events in the Nucleated region defined in Plot G. This number is typically set for at least 5000 healthy cells' nuclei. <u>Note</u>: BD HTS users should include Time in their gating logic so that the first several seconds of analysis for each well are omitted from the data files.
- 15. Acquire data for the plate in its entirety or select the wells you wish to process.

10. Calculations

Percent MN

*Note: these are Nucleic Acid Dye A (EMA) negative events that have been appropriately gated on light scatter and Nucleic Acid Dye B (SYTOX Green) fluorescence characteristics, as shown below.


Examples:

2. Percent EMA-Positive

The fraction of EMA-positive chromatin is responsive to cell death - both necrosis but especially apoptosis (since a single apoptotic cell can generate numerous EMA-positive chromatin events). There are a number of ways one could potentially devise a biomarker of cytotoxicity based on EMA staining. In general, we recommend using a numerator that equates to the number of EMA-positive chromatin events, irrespective of whether these events fall within the two regions "FSC vs Nucleic Acid B" and "SSC vs Nucleic Acid Dye B". See blue rectangle encompassing "Apoptotic/Necrotic" events, below.

Regarding the denominator, one can use the number of "Nucleated" events, as shown by the purple rectangle, above. Alternately, one can use the number of "EMA-positive" and "EMA-negative" events. This is shown as a red rectangle encompassing both "Apoptotic/Necrotic" events and "NOT (Apoptotic/Necrotic" events, above.

3. Percent EMA-Positive Fold Change

This fold change value is for an individual well (numerator) relative to the mean concurrent solvent control wells (denominator). Since an apoptotic cell can generate many EMA-positive events, this metric is particularly responsive to test article-induced apoptosis.

Example:

4. Nuclei to Bead Ratio (NBR)

*Note: these are Nucleic Acid Dye A (EMA) negative events that have been appropriately gated on light scatter and Nucleic Acid Dye B (SYTOX Green) fluorescence characteristics, as shown below.

Example:

Page 15 of 26 version 240418

5. Percent Relative Nuclei Count (% RNC)

This value is derived from NBR and considers an individual well relative to the concurrent solvent control wells' mean value. This measurement is generally taken at time of harvest, i.e., when MN are being scored.

Example:

6. Percent Cytotoxicity, Based on % RNC

This value is derived from % RNC and considers an individual well relative to the concurrent solvent control wells' mean value. This measurement is generally taken at time of harvest, i.e., when MN are being scored. For this metric values ≤ 0 % represent no cytotoxicity, and values ≥ 100 % represent maximal cytotoxicity.

Example:

7. Percent Relative Increased Cell Count (RICC)

This formula comes from OECD Test Guideline 487. As noted in the Guideline, "when using automated systems, for instance flow cytometry, laser scanning cytometry or image analysis, the number of cells in the formula can be substituted by the number of nuclei".

It should be apparent that when using number of cells (or nuclei) as suggested by this formula, the volume of cells (or nuclei) must be held constant.

Another way to approach this calculation is to substitute a cell (or nuclei) number with a cell (or nuclei) to Counting Bead ratio. Note that this is only valid if the same Counting Bead solution has been used throughout the experiment.

Example:

8. Percent Cytotoxicity, Based on RICC

This value is derived from RICC and considers an individual well relative to the concurrent solvent control wells' mean value. This measurement is generally taken at time of harvest, i.e., when MN are being scored. For this metric values ≤ 0 % represent no cytotoxicity, and values ≥ 100 % represent maximal cytotoxicity.

Example:

% Cytotoxicity =
$$x 100 - 84.6 = 15.4 \%$$

9. Number of Population Doublings (PD)

This formula comes from OECD Test Guideline 487. As noted in the Guideline, "when using automated systems, for instance flow cytometry, laser scanning cytometry or image analysis, the number of cells in the formula can be substituted by the number of nuclei".

It should be apparent that when using number of cells (or nuclei) as suggested by this formula, the volume of cells (or nuclei) must be held constant.

Another way to approach this calculation is to substitute a cell (or nuclei) number with a cell (or nuclei) to Counting Bead ratio. Note that this is only valid if the same Counting Bead solution has been used throughout the experiment.

Example:

10. Percent Relative Population Doublings (RPD)

This value is derived from RPD and considers an individual well relative to the concurrent solvent control wells' mean value. This measurement is generally taken at time of harvest, i.e., when MN are being scored.

Example:

11. Percent Cytotoxicity, Based on RPD

This value is derived from RPD and considers an individual well relative to the concurrent solvent control wells' mean value. This measurement is generally taken at time of harvest, i.e., when MN are being scored. For this metric values ≤ 0 % represent no cytotoxicity, and values ≥ 100 % represent maximal cytotoxicity.

Example:

% Cytotoxicity =
$$100 - 75 = 25$$
 %

11. Troubleshooting

Observation	Possible Cause	Suggestion
Solvent control wells	Cells may not be fully	Wait at least one week (2 weeks for TK6 cells) before
exhibit unusually high	recovered from thaw.	treatment to allow cells to fully recover.
MN or EMA-positive	Media, serum, antibiotics,	Ensure that you are using cell culture media and
frequencies.	or other growth factors may not be appropriate for your cell line.	supplements that are appropriate for your cell line.
	Cells are overgrown.	Ensure that optimal cell growth conditions are maintained before and during treatment.
Positive controls not	Cells may have been	Lack of an expected response can sometimes be attributed
showing a dose-	harvested too early,	to a suboptimal cell harvest time. Generally speaking,
related response.	resulting in too few cell	harvest should occur within 1.5 to 2 normal cell cycles. If
	divisions for MN to be	positive controls still do not respond after ensuring harvest
	expressed.	time is correct, contact Litron for assistance.
FITC channel values	Sheath is not appropriate.	Ensure that blood bank saline or filtered distilled water is
shift over time when		used in place of BD sheath fluid.
using the HTS on a		
BD flow cytometer.		
Solvent and positive	MN events are being	Ensure that threshold setting(s) are not eliminating MN
control wells exhibit	thresholded out.	events from data acquisition. For instance, it is important
unusually low MN		that a FITC channel threshold setting does not exclude
frequencies.		events with ≥ 1/100 the DNA-dye associated fluorescence of 2N nuclei.

12. References

- Avlasevich S, Bryce S, De Boeck M, Elhajouji A, Van Goethem F, Lynch A, Nicolette J, Shi J, Dertinger S (2011) Mutagenesis 26, 147 - 152.
- Avlasevich, SL, Bryce, SM, Cairns, SE, Dertinger, SD (2006) Environmental & Molecular Mutagenesis 47, 56 66.
- Bemis, JC, Bryce SM, Nern, M, Raschke, M, Sutter A. (2016) Mutat. Res. 795, 61-9.
- Bryce SM, Avlasevich SL, Bemis JC, Dertinger SD (2011) Environmental & Molecular Mutagenesis 52, 80 86.
- Bryce, SM, Avlasevich, SL, Bemis, JC, Lukamowicz, M, Elhajouji, A, Van Goethem, F, De Boeck, M, Beerens, D, Aerts, H, Van Gompel, J, Collins, JE, Ellis, PC, White, AT, Lynch, AM, Dertinger, SD (2008) Mutation Research 650, 181 195
- Bryce SM, Avlasevich SL, Bemis JC, Phonethepswath S, Dertinger SD (2010) Mutation Research 703, 191-199.
- Bryce SM, Avlasevich SL, Bemis JC, Tate M, Walmsley RM, Saad F, Van Dijck K, De Boeck M, Van Goethem F, Lukamowicz-Rajska M, Elhajouji A, Dertinger S. (2013) Environmental & Molecular Mutagenesis 54, 180 - 194.
- Bryce, SM, Bemis, JC, Avlasevich, SL, Dertinger, SD (2007) Mutation Research 630, 78 91.
- Bryce, SM, Shi, J, Nicolette, J, Diehl, M, Sonders, P, Avlasevich, SL, Raja, S, Bemis, JC, Dertinger, SD (2010)
 Environmental & Molecular Mutagenesis 51, 260-266.
- Kirsch-Volders, M, Sofuni, T, Aardema, M, Albertini, S, Eastmond, D, Fenech, M, Ishidate, M Jr, Kirchner, S, Lorge, E, Morita, T, Norppa, H, Surrallés, J, Vanhauwaert, A, Wakata, A (2003) Mutation Research 540, 153 163.
- Nicolette J, Diehl M, Sonders P, Bryce S, Blomme E (2011) Environmental & Molecular Mutagenesis 52, 355 362.
- OECD (2016), Test No. 487: In Vitro Mammalian Cell Micronucleus Test, OECD Publishing, Paris.
- Shi, J, Bezabhie, R, Szkudlinska, A (2010) Mutagenesis 25, 33 40.
- Thougaard AV, Christiansen J, Mow T, Hornberg JJ (2014) Environmental & Molecular Mutagenesis 65, 704-18.

13. License Agreement and Limited Product Warranty

Litron Laboratories 3500 Winton Place, Suite 1B Rochester, New York 14623

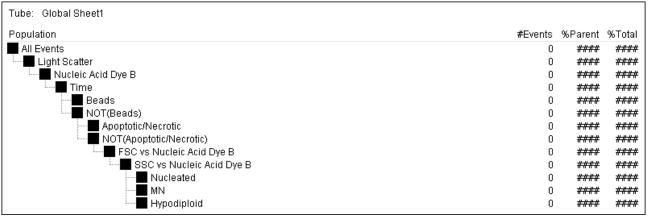
Telephone: 585-442-0930

Order Toll Free: 877-4-LITRON (877-454-8766)

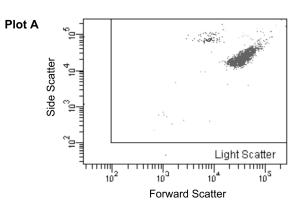
Fax: 585-442-0934
email: info@LitronLabs.com
World Wide Web: www.LitronLabs.com

By utilizing this kit, your company is agreeing to be bound by the terms of this License. This License allows the use of the *In Vitro* MicroFlow® Kit for the preparation and analysis of 250, 1000, or 2000 samples.

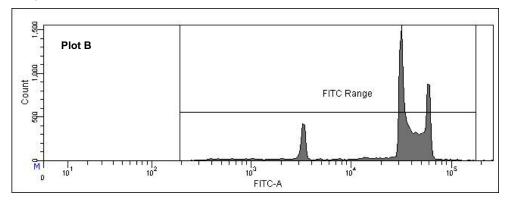
MicroFlow® All rights reserved. μ icroFlow® is a trademark of Litron Laboratories. U.S. Patent Nos. 7,445,910 and 7,645,593. Copyright 2014-2024, Litron.

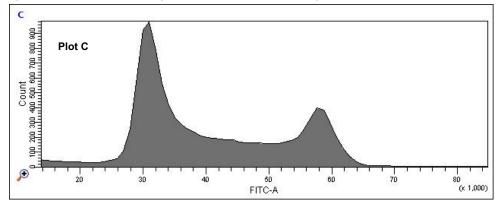

SYTOX® Green nucleic acid stain is a registered trademark of Molecular Probes. CellQuest™ and FACSDiva™ are trademarks of BD Biosciences Inc. MACSQuantify™ is a trademark of Miltenyi Biotec GmbH. Accutase® is a registered trademark of Innovative Cell Technologies, Inc. VWR® is a registered trademark of VWR International, LLC.

This warranty limits our liability to replacement of this product. Litron shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product. This product is for research purposes only and is not intended for clinical or diagnostic use.

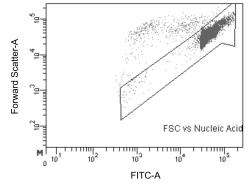

Appendix A: Template Preparation and Representative Plots

CellQuest[™] v3.3, CellQuest[™] Pro v5.2, FACSDiva[™] v6.1, and MACSQuantify[™] template files can be downloaded from Litron's website (www.LitronLabs.com). The following pages show actual screen images of the plots found on the FACSDiva[™] v6.1 template (seven bivariate graphs and two histograms). Flow cytometry operators who are not using BD or Miltenyi software should find these pages valuable for constructing their own data acquisition and analysis template.

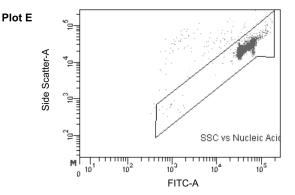

- 1. Create plots and regions as shown below.
- 2. Define the following regions:
 - "Light Scatter" in Plot A
 - "FITC Range" in Plot B
 - "SSC vs. Nucleic Acid Dye B" in Plot D
 - "FSC vs. Nucleic Acid Dye B" in Plot E
 - "Apoptotic/Necrotic" in Plot F
 - "MN", "Nucleated" (and optional "Hypodiploid") in Plot G
 - "Beads" in Bead Plot
 - "Time" in Time Histogram
- 3. Specify the following gates based on the following regions:


- 4. Set a stop mode based on the number of events in the "Nucleated" region defined in Plot G. This number is typically set for at least 5,000 healthy cells' nuclei.
- 5. Set the Storage Gate to Nucleated in Plot G. In conjunction with the Time Histogram shown in step 14, this gating logic excludes the first few seconds of data from each well. This strategy is important for BD-brand HTS users, as fluorescence signals tend to require several seconds before they stabilize.
- 6. It is important not to be too restrictive with the "Light Scatter" region in Plot A, as MN could be excluded based on their small size. Therefore, the lower bounds of the region should be approximately 2 logs lower in FSC and SSC than the bottom left edge of the nuclei events, as shown here.

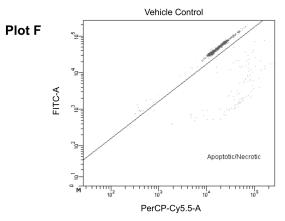
7. The "FITC Range" region should include nuclei as well as sub-2n chromatin that exhibit up to 1/100th the SYTOX fluorescence signal of 2n nuclei.



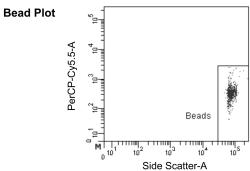
8. By examining the Nuclei Acid Dye B range with a linear FITC-A scaling in Plot C, one can observe cell-cycle positions.

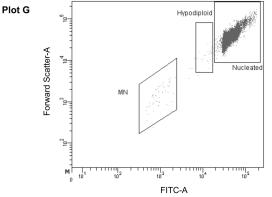

9. Much of the chromatin associated with dead/dying cells falls above an appropriately located "FSC versus Nucleic Acid

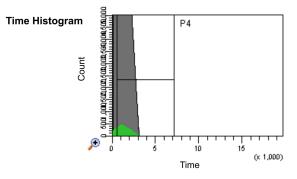
Dye B" region in Plot D.



 Much of the chromatin associated with dead/dying cells falls above an appropriately located "SSC versus Nucleic Acid Dye B" region in Plot E.


Plot D


11. A gate based on an appropriately positioned "Apoptotic/Necrotic" region in Plot F is used to exclude the chromatin of dead/dying cells.


12. The Bead Count Plot allows for the resolution of the counting beads used for the Nuclei-to-Bead Ratio calculation or other cytotoxicity metrics.

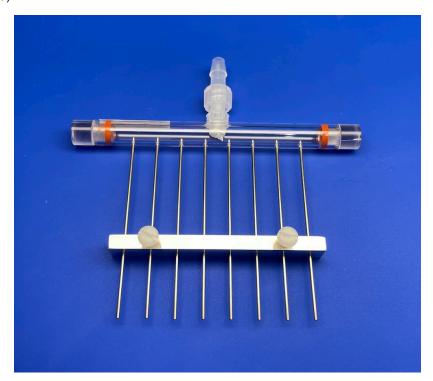
13. Only nuclei and micronuclei that meet the multiple characteristics associated with "healthy cells" are used to calculate MN frequency.

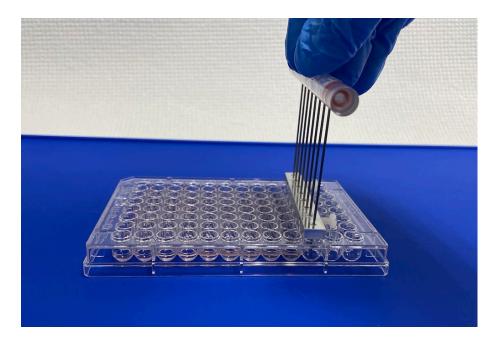
14. When analyzing 96 well plates using BD-brand HTS equipment, a "Time" marker should be set and used in the Data Acquisition logic so that approximately the first 10 seconds of data are not saved. Over this initial period of time, FL1 fluorescence is not stable.

Appendix B: Criteria for Scoring Micronuclei

The *In Vitro* MicroFlow sequential staining procedures are used in conjunction with other cell culture and flow cytometry parameters to ensure that reliable micronucleus measurements are obtained. At a minimum, we recommend using the following criteria to guard against false positive results:

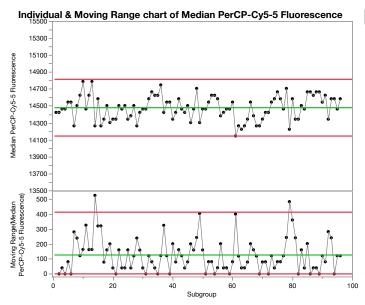
- The maximum concentration examined should be based on cytotoxicity or established limit concentrations (see Section 3.5). Treatment conditions should be sufficient to induce 55 % ± 5 % cytotoxicity.
- MN events must exhibit 1/100th to 1/10th the SYTOX Green fluorescent intensity of 2n nuclei (Appendix A, Plot G).
- 3. MN events must fall within a FCS vs. Nucleic Acid Dye B fluorescence region (Appendix A, Plot D).
- 4. MN events must fall within a SSC vs. Nucleic Acid Dye B fluorescence region (Appendix A, Plot E).
- 5. MN events must be outside the Apoptotic/Necrotic region (Appendix A, Plot F). This helps to further exclude apoptotic and necrotic chromatin from analysis. Even so, caution should be exercised when interpreting MN data for test article concentrations that are associated with high percentages of EMA-positive events. Under these circumstances, the MN values may be artificially high. Inclusion of an percent EMA-positive fold-induction cut-off value may be useful to eliminate overly toxic conditions from interfering with genotoxicity assessment. Our current advice is to only examine concentrations where the percent EMA-positive fold change is less than or equal to 4.


Appendix C: Plate Placement During Nucleic Acid Dye A Photoactivation


Ideal plate placement during Nucleic Acid Dye A photoactivation is shown below.

Appendix D: Multichannel Aspirator with Bridge

In order to achieve efficient and consistent aspiration across 96 well plates, we recommend the use of a multichannel device that is fitted with a bridge in order to control depth. One example is a product manufactured by V&P Scientific (cat. no. VP 180PC-3S).

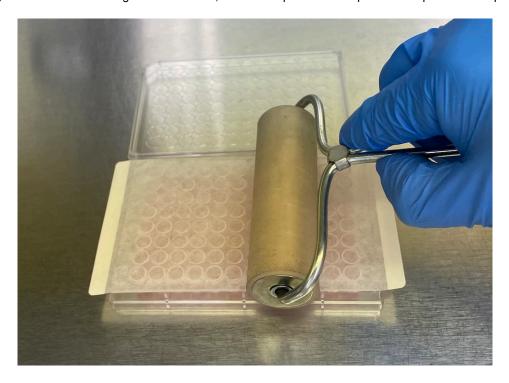

Appendix E: Counting Beads as Quality Control Particles

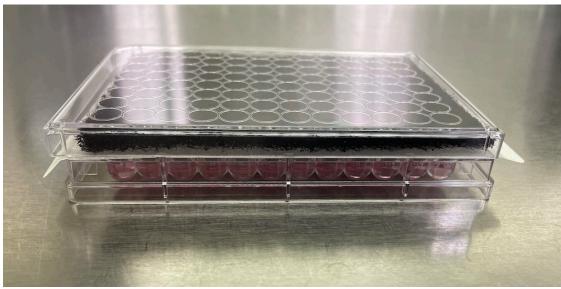
Throughout this instruction manual we have referred to fluorescent latex microspheres as "Counting Beads." It is true that they can serve an important role facilitating cell (or nuclei) density measurements, especially for flow cytometers that are not equipped to make volumetric counts.

However, it should also be appreciated that these particles can also serve important quality control functions. Since they are highly uniform in terms of size and light scatter, fluorescence intensities, they can give kit users important insights into the behavior of the flow cytometer, as well as elements of benchtop processing.

One instructive example is provided below. The top panel shows an "I-type control chart." The Y-axis displays median bead fluorescence intensity (PerCP-Cy5-5) for each in vitro MicroFlow sample analyzed on a particular day. The X axis shows each of the individual samples analyzed on a particular day, in order of acquisition, left to right. In this example, there is no drift with respect to time, and the level of variation is within the expected range. Together, this information provides evidence that the instrumentation and other elements of sample processing were "under control."

Thus, Counting Beads should be viewed as a powerful quality control tool, one that is incorporated into each well that is analyzed.




Median PerCP-Cy5-5 Fluorescence Limit Summaries						
Points plotted	LCL	Avg	UCL	Limits Sigma	Subgroup Size	
Individual	14143.27	14478.41	14813.54	Moving Range	1	
Moving Range	0	126.0526	411.7549	Moving Range	1	

Appendix F – Strategies for Dealing with Volatile Chemicals

The volatility of some test chemicals can negatively affect MicroFlow data in adjacent wells. When dealing with volatile chemicals, or test substance that have not be characterized in terms of volatility, it may be useful to treat cells in 96 well plates that have a specialized mat applied, or in more extreme cases, to also cover the wells with activated carbon.

Two examples are shown below. Top panel, VWR® Rayon Films for Biological Cultures, from VWR®, cat. no. 60941-086. Bottom panel, the rayon film in combination with Honeywell "R" Replacement Carbon Pre-Filter, from Breathe Naturally, cat. no. HPA300, cut to size. When using the carbon filter, the 96-well plate cover is placed on top to hold it in place.

